
2022 IEEE International Conference on Big Data (Big Data)

978-1-6654-8045-1/22/$31.00 ©2022 IEEE 3577

Twitter Bot Identification: An Anomaly Detection
Approach

Lulwah Alkulaib∗ ‡, Lei Zhang∗, Yanshen Sun∗, and Chang-Tien Lu∗
∗ Department of Computer Science, Virginia Tech, Falls Church, VA 22043 USA

‡ Department of Computer Science, Kuwait University, Kuwait
{lalkulaib, zhanglei, yansh93, ctlu}@vt.edu

Abstract—The vast presence of bots on Twitter requires
reliable and accurate bot detection methods that differentiate
legitimate bots from malicious ones. Despite the success of those
methods, they fail to address the following challenges: (1) the huge
size of datasets required to train a model to detect bots, (2) the
constant evolution in bot accounts to evade automatic detection
leads to scarcity in ground truth real-world datasets, and (3)
the complexity in learning representations of a heterogeneous
attributed network like Twitter. In this paper, we propose a novel
framework, ADNET, to detect anomalies in Twitter-attributed
networks using the least amount of labeled data. Specifically,
we address the limitations of previous methods by proposing
a topology-based active learning framework that uses a deep
autoencoder to train the model and is able to handle large
graphs better than previous methods. Our experimental results
demonstrate that the proposed approach outperforms state-of-
the-art methods in detecting anomalous bot accounts and reduces
the annotation cost in Twitter attributed networks.

Index Terms—Twitter bot detection, Automated accounts, So-
cial Media

I. INTRODUCTION

Twitter bots are accounts on Twitter that are fully or partially
controlled by a computer program using the Twitter API. The
unique ability of being controlled by a software allows those
accounts to generate a large amount of content in a short period
of time. Twitter’s terms of service allow legitimate bots to
operate on the social media platform as long as they clearly
identify themselves as a bot in the user profile section 1. This
perk has proven useful to news agencies’ accounts that can
produce a high volume of news on a daily basis that is shared
with their followers. Malicious bots, which do not identify
themselves as bots on their profiles, have utilized this ability to
spread fake news [1], [2], spam [3], and offensive content [4]
on Twitter. Detecting malicious bots has been a challenging
task due to the nature of those bots. They try to evade being au-
tomatically detected by turning the software controlling these
accounts on and off intermittently and constantly changing
their behavior patterns to mimic human behavior [5]. The
vast presence of bots on Twitter requires reliable and accurate
bot detection methods that differentiate legitimate bots from
malicious ones.

1https://twitter.com/en/tos

Existing bot detection methods on Twitter focus on hand
crafted features that identify bots using profile-related and
tweet-related features using traditional classification meth-
ods [6]–[10]. Due to the evolving nature of bots on Twit-
ter [11], those classification methods do not perform con-
sistently well especially when new features are needed to
detect the improved bot behavior. Deep learning methods like
recurrent neural networks [12], graph neural networks [13],
[14], and graph convolutional networks [15], [16] were pro-
posed to correctly identify bot accounts. Despite the success of
those methods, they fail to address the following challenges:
(1) the huge size of datasets required to train a model to
detect bots, (2) the constant evolution in bot accounts to evade
automatic detection leads to scarcity in ground truth real-world
datasets, (3) the complexity in learning representations of a
heterogeneous attributed network like Twitter.

To tackle those challenges, we treat the bot detection
problem as an anomaly detection problem. We propose a
novel framework called ADNET, to detect anomalies in Twitter
attributed networks using the least amount of labeled data.
Specifically, ADNET partitions the network topologically,
chooses the most informative nodes in each partition, and uses
that subset of the network in training the learner as an input to
the autoencoder to detect anomalies. The autoencoder learns
graph representations using a graph transformer as an encoder,
then reconstructs the topological structure and nodal attributes
with corresponding decoders. The errors resulting from the
autoencoders are used to score and rank nodes. The resulting
nodes are then added to the labeled subset of the network until
the stopping criterion is met. Our main contributions can be
summarized as follows:

1) Development of a novel attributed network topology-
based active learning framework: We propose a
novel active learning querying method specifically for
attributed networks that partitions the network topo-
logically by utilizing community structural properties
to select the most informative nodes to be labeled.
Our method reduces the annotation cost in attributed
networks. To the best of our knowledge, this is the
first framework that utilizes a network partitioning ac-
tive learning method to train a graph transformer for
anomalous user detection in Twitter attributed networks.

2) Design of an active learning algorithm for anomaly

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 B

ig
 D

at
a

(B
ig

 D
at

a)
 |

97
8-

1-
66

54
-8

04
5-

1/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
B

ig
D

at
a5

56
60

.2
02

2.
10

02
09

19

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3578

detection in attributed networks: Given an attributed
network, a small subset of labeled nodes, the proposed
algorithms train a graph transformer-based autoencoder
to detect anomalies from a subset of the network chosen
based on the most informative nodes in each partition.

3) Extensive experimental evaluation and performance
analysis: Our method was extensively evaluated on
three real-world Twitter datasets and three benchmark
attributed network datasets. Comparisons with baselines
and state-of-the-art methods demonstrated its effective-
ness and efficiency.

4) Extension of three existing real-world attributed
networks for the anomaly detection task using Twit-
ter data: The proposed method was used to identify
anomalous bot accounts on Twitter. In order to construct
our attributed networks for each dataset, using existing
datasets is insufficient. Three Twitter datasets, including
bot accounts, were collected. These datasets were then
extended by collecting their following and followers for
each available user account. Then, ADNET was used
to detect anomalous accounts (bots) in these Twitter
attributed networks.

II. RELATED WORK

A. Bot Detection in Twitter

Different methods have been presented for automatically
detecting bots in Twitter datasets. Supervised approaches that
extract features from user accounts and posts rely heavily on
annotated datasets to learn the difference between bots and
legitimate users accounts [17]. However, since bots constantly
change their behavior to evade automatic detection [5], those
datasets need to be continuously updated with new types
of bots in order to be detected. More recently, works that
adopt graph techniques have been proposed for Twitter bot
detection. SATAR [18] leverages user information and the
Twitter network graph structure features to identify bots.
AlHosseini et. al. [19] proposed a GCN-based method that
leverages node features and neighborhood features to detect
bots. And BotRGCN [20] uses relational GCNs to represent
the Twitter network and user features to detect bots. Although
these methods have achieved comparative results, they heavily
rely on the datasets they are trained on and types of bots to
which they are exposed. We solve this issue by treating bot
detection as an anomaly detection problem which helps in
a more accurate bot detection that is not data or bot type
dependent.

B. Anomaly Detection on Attributed Networks

Earlier work in graph anomaly detection used feature engi-
neering to detect anomalies [21]–[23], which performs well on
labeled datasets only. Although some statistical-based methods
exist, they are computationally and time expensive [24], [25].
In recent years deep learning techniques like reinforcement
learning (RL), graph attention networks (GATs), generative

adversarial networks (GANs), and graph convolutional net-
works (GCNs) have been used in anomaly detection [26]–
[31]. A recent survey [32], shows that graph anomaly detection
using deep learning techniques generates better results when
detecting anomalies. As the amount of attributed network
datasets has increased, anomaly detection on attributed net-
works has gained more popularity among researchers. Recent
existing methods use deep learning techniques in anomaly
detection on attributed networks. AMEN [33] detects anoma-
lous neighborhoods in attributed networks by leveraging each
node’s ego network. Radar [24] characterizes the residuals of
attribute information and its coherence with network infor-
mation for anomaly detection. ANOMALOUS [34] performs
attribute selection and anomaly detection based on cut matrix
decomposition as well as residual analysis. DOMINANT [27]
utilizes a GCN autoencoder to reconstruct the attribute, and
the adjacency matrix then ranks anomalies based on the
aggregated error. Despite the success of these methods in
identifying anomalies in attributed networks, they require a
lot of training samples to learn, and their performance drops
drastically on larger graphs. To the best of our knowledge, our
proposed framework is the first to identify anomalies using
topology-based active learning on attributed networks which
performs significantly better, especially on large attributed
networks.

C. Active Learning

Active learning algorithms incrementally choose which data
points to annotate by querying an oracle to learn the correct
prediction for a given problem [35]. An AL model’s accu-
racy increases as it is exposed to more data samples. AL
sampling methods can use one query at a time, which can
lead to overfitting [36], batch mode where diverse instances
are queried give better results for deep learning models [37],
or a combination of both where the querying algorithm is
assigned a budget that is used to choose a batch of nodes for
labeling. For anomaly detection, AL has been used in medical
datasets to identify anomalies with arrhythmia issues [38].
Russo et al. [39] adopt active learning to identify anomalies
in environmental datasets using machine learning algorithms.
These works all show that AL was used to resolve the label
sparsity issue in their respective fields. Previous works applied
AL to attributed networks [40], [41] query single nodes at a
time which causes their models to overfit. In this work, the
combined querying method was utilized by setting a budget to
select a batch of nodes to prevent overfitting and minimize the
use of training resources. While some studies have explored
AL in anomaly detection, there aren’t any studies that provide
insight on using active learning on attributed network anomaly
detection.

III. PROPOSED FRAMEWORK

The motivation for this framework is that large attributed
networks are becoming more popular as a datasource, and
using them to train models is costly. We propose a framework
that defines partitions in the attributed network graph, chooses

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3579

the most informative nodes to query, and then uses them
in model training. This proposed method reduces the cost
of training models by not requiring as much labeled data
and considers structural graph representations when detecting
anomalies using the autoencoder.

A. Problem Statement

Active Learning on Attributed Networks Definition An
attributed network is typically represented as G = {V, E , T }
with its adjacency matrix A ∈ RN×N and node labels Y ,
where V denotes the set of nodes, E denotes the set of
edges, T = [t1, t2, . . . , tN]

T ∈ RN×M represents the nodal
attributes matrix, and each vector ti ∈ RM represents the
attributes for the node vi ∈ V . A binary adjacency matrix A is
used to represent the attributed network’s topological structure,
where Ai,j = 1 if there is a link between nodes vi and vj , else
Ai,j = 0. The nodes in the attributed network are divided into
two sets: an initial labeled set S0 with node labels YS0

, and
the rest of the unlabeled nodes would belong to the unlabeled
set S1 with node labels YS1

.
Ranking Anomalies in Attributed Networks using Active

Learning Problem: Given nodes from the attributed network
V , and an initial labeled set of nodes S0, the goal is to
determine which unlabeled nodes should be selected to label
when given a fixed budget b that produces a model M with
the lowest loss:

argmin
S1⊂V

Lθ (YS0
∪ S1)

s.t. n(S1) ≤ b
(1)

where YS0
is the set of existing pre-labeled nodes, S1 is the set

of unlabeled nodes we want to label, n(S1) is the cardinality
of the set S1, b is the budget for the labeling, θ is the parameter
of the anomaly detection model learned from the labeled set
(the union of S1 and YS0

), and L is the loss of the anomaly
detection problem conditioned on model parameters θ and
labeled data.

B. Preliminaries

Our ADNET framework shown in Figure 1, leverages a deep
autoencoder with a graph self-attention encoder to enhance AL
anomaly detection results in large attributed networks.

Self-Attention Based Anomaly Detection for Graph
Data Unlike previous works that use GCNs [27] to encode
graph data into representations, this method adopted a graph
transformer [42] as a self-attention encoder that learns graph
representations for anomaly detection in our AL framework.
Due to the heterogeneous nature of the attributed network data,
it is essential to preserve both node embeddings and graph
structures to be able to identify anomalous nodes.

The TransformerSelfAttention() in Equation 2 is uti-
lized to learn vector representations of all nodes for the given
graph G, then outputs H ′(k) which is used in the GCN model
to improve the vector representations of nodes by adding the
structure of the graph G and produces a graph embedding as
the output of the encoder.

The structure reconstruction decoder uses the representa-
tions to predict if a link exists between pairs of nodes by
training a link prediction layer of the learned representations
and its transpose shown in Equation 4.

H ′(k) = TransformerSelfAttention(Hk) (2)
Hk+1 = GCN(A,H ′(k)) (3)

Â = sigmoid
(
Hk+1H′(k+1)

)
(4)

Nodal connectivity patterns are used as an indicator of
the node being anomalous by calculating the reconstruction
error Es = A− Â where Â is the estimated adjacency
matrix. A higher norm value for ES means that the node
has a higher probability of being an anomaly with regard
to the network structure. The attribute reconstruction decoder
takes the learned representations Hk+1 from the encoder
to approximate nodal attributes information by computing
reconstruction errors. To predict the original nodal attributes,
we leverage a GCN denoted as in equation 5,

X̂ = fRelu

(
Hk+1,A |W(m)

)
(5)

where W (m) is a trainable layer weight matrix needed to
learn the network representation. The GCN is then used in
computing the reconstruction errors EA = T− T̂ to detect
anomalies with regards to nodal attributes.

The reconstruction errors calculated in the structure recon-
struction decoder and the attribute reconstruction decoder are
used to detect anomalies in the attributed network. In order
to account for both nodal attributes and graph structure in our
attributed network, the model jointly learns the reconstruction
errors by minimizing the deep autoencoder objective function:

L = (1− α)ES + αEA (6)

where the controlling parameter α balances the reconstruction
impacts. Consecutively, the approximation of the attributed
network is iteratively calculated until the objective function
converges and the reconstruction errors are calculated to rank
nodal abnormalities. The anomaly score for each node can be
computed as

ascore (vi) = (1− α)eS + αeA (7)

Our work utilized the deep autoencoder structure and was
developed with a graph-based self-attention encoder which
allowed us to incorporate graph structures and nodal attributes
in our model properly. The graph-based self-attention used
in the encoder learns complex graph representations and
preserves both node embeddings and graph structures better
than using only GCNs or only graph transformers to identify
anomalous nodes.

C. ADNET Framework Description

ADNET is an active learning anomaly detection frame-
work for attributed networks. The architecture of our pro-
posed framework is illustrated in Figure 1. The objective
of ADNET is to select the most informative nodes from

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3580

large attributed networks to be labeled such that the anomaly
detection performance is improved with minimal labeling cost.
Therefore, topology-based AL was incorporated with the deep
autoencoder, which maps the attributed network into a latent
low-dimensional feature space, and then recovers the original
data based on latent representations to detect anomalies based
on the computed reconstruction errors. The workflow of the
ADNET framework shown in Fig. 1 and Algorithm 1 can be
described as follows:

1) Given a graph G, the initial labeled set L, the unlabeled
set U , and the budget η as input. The topology-based
attributed network sampling in algorithm2 is performed.

2) After the graph partitions, cluster centroids, and the most
informative nodes are defined, we annotate the selected
nodes based on their partition and merge them with the
labeled set of nodes L. We also subtract the selected
nodes from the unlabeled set U .

3) Finally, we train the autoencoder model with the labeled
set of nodes L that are queried by algorithm 2. The
graph-based self-attention encoder takes the attributed
network as an input, and learns the graph representations
by learning both node embeddings and graph structures.
The output vector is then passed on to the decoders,
where the structure reconstruction decoder reconstructs
the graph topology, and the attribute reconstruction de-
coder reconstructs the nodal attributes using the learned
graph embeddings. The reconstruction errors would be
used to rank the nodes based on their anomaly scores,
where the top nodes are considered anomalous.

Using this approach, the strengths of active learning and
deep autoencoders are combined to minimize the amount of
labeling needed in large attributed networks and maximize the
anomaly detection task performance.

Algorithm 1 Active Learning Anomaly Detection for At-
tributed Networks

function ACTIVEANOMALY(L,U,G)
Given : the initial labeled set L, the unlabeled set U,
the graph G, the partition number K, budget η, trade-off
parameter α :

S ←TopologyBasedANSampling(L,U,G,K, η, α)
L← L ∪ S
U ← U − S
lambda ←train(L,G) //train model M with labeled

samples acquired from topology sampling

Topology-based Attributed Network Sampling A novel
query strategy algorithm is shown in algorithm 2, which
conducts a topology-based attributed network sampling. In-
spired by previous works that consider community detection
to partition well-defined networks [37], [43], the quality of
each partition was measured as a function of modularity and
purity. Existing community detection methods are applied to
fully labeled graphs; this challenge was addressed by assigning
unlabeled nodes to communities according to the average

Algorithm 2 Topology-based Attributed Network Sampling
Input: A graph G, the initial labeled set L, the unlabeled

set U, budget η, partition number K, trade-off parameter α
Output: A subset of unlabeled nodes S1 of size

η : S1 ⊆ V \S0

HK ← GraphPartition(K)
Set S1 = ∅. ▷ to hold the subset of unlabeled nodes
for Hk ∈ HK do

ηk ← η//K
Hk ← Hk\ {S0 ∪ S1}
Ek ← {g (vi)}i∈Hk

Lk ← L ∩Hk

Uk ← U ∩Hk

Gk = Generate(G,Mk) ▷ generating partitions
C ← Initialize(Gk)
Z ← αP + (1− α)Q
Zprev ← −∞
while Z > Zprev do
C ← PartitionNodes(Gk, C, α) ▷ greedily

identifies partitions by maximizing modularity and purity
G← Aggregate(Gk, C) ▷ Network reconstruction

and moving nodes to their partitions
Compute P according to Eq. (10) and Q according

to Eq. (8)
Zprev ← Z
Z ← αP + (1− α)Q

end while
for vi ∈ Uk do

vi ← AssignCommunity(vi, C)
C ← {C ∪ vi} ▷ Update the community

end for
end
CT ← FindCentroids(C) ▷ Compute the centroids of

the communities
S ← ClosestNodes(CT,Uk, ηk) ▷ Find ηk unlabeled

nodes closest to the centroids.
if S ̸= ∅ then

S1 = S1 ∪ S
end if
return S

similarity between the unlabeled node and all nodes in a
partition. The sampling strategy partitions the graph G into
K-partitions following the method described below. Then,
for each partition, topology-based community detection was
conducted on labeled nodes. As for unlabeled nodes, they
are assigned to their corresponding communities based on
their similarity to a community calculated using equation
12. Finally, the unlabeled nodes closest to each community
centroid were selected as the most informative nodes to use
to train our model M in algorithm 1.

1) Topology-based Attributed Network Partition Method:
In order to correctly identify the partitions in our attributed
networks, the quality of the partition was calculated as a
function of modularity and purity.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3581

Ranked
 nodes

Anomaly

scoring

A
n

o
m

al
ie

s
N

o
rm

al

Encoder DecoderPartitioned Attributed Network

Self-Attention

Transition

Function

Graph Convolution

Network

Embedding
Vectors

Structure

Reconstruction

 Decoder

Attribute

Reconstruction

 Decoder

Attributed Network

Topology-based Attributed Network Sampling Deep Autoencoder with Self-Attention Encoder

Figure 1: An overview of our proposed framework, ADNET, where a graph transformer-based autoencoder is trained to detect
anomalies from a subset of the network chosen based on the most informative nodes in each partition

Modularity is a quality function that measures the degree
to which connected nodes within a network can be decoupled
into communities or partitions. The equation for modularity
can be denoted as:

Q =
1

(2m)

∑
vw

[
Avw −

kvkw
(2m)

]
δ (cv, cw) (8)

where m is the number of graph edges, Av,w is the adjacency
matrix for v, w ∈ V, kv, kw is the degree of v, w, and δ (cv, cw)
is the function determining if a node v, w belongs to the same
partition with a value of 1 or 0 if the node doesn’t belong to
the partition.

Purity is a measure of the extent to which a partition
contains a single class. The purity of a partition C is the
average purity of all communities in the partition, computed
as:

P =
1

|C|
∑
c∈C

Pc (9)

where P is maximized when nodes in the same community
share the same label and Pc is the frequency of the most
common class in the network present in one partition. Purity
for a given community c is denoted as:

Pc =
∏
a∈A

max
(∑

v∈c a(v)
)

|c|
(10)

where A is the label set, a ∈ A is a label, a(v) is an indicator
function that takes value 1 if a ∈ A(v). The modularity
and purity were combined linearly as in Eq. 11, by applying
a trade-off parameter α, to tune the importance of each
component and adapt the score according to different attributed
networks.

Z = αP + (1− α)Q (11)

The basic idea is that nodes in the network try to traverse the
community labels of all neighbors and select the community
label that maximizes the modularity and purity. After maxi-
mizing the modularity and purity, each community is treated as
a new node, and the process is repeated until the modularity
no longer increases. This method is suitable for large-scale
networks.

2) Most Informative Nodes Selection: Once the partitions
are detected, unlabeled nodes are assigned to the communities
based on their similarity to a partition (algorithm 2 line 20).
Instead of measuring the similarities between all nodes vj in a
partition Ck, we pre-define c as a character vector of a given
node and evaluate the cost of each node in the partition Ck.
As c can be realized in many ways, we use the average of all
the nodes in the partition Ck. As a consequence, the equation
is formalized as follows:

arg min
k=1,...,K

f(g(vi), c) (12)

where f(·, ·) and g(·) are distance measure function, and
aggregation function respectively. Jensen-Shannon divergence
[44] for the f function. The g function is chosen according
to our GCN model in the topology-based attributed network
sampling (g(vi) = (A2F) where A is the normalized adja-
cency matrix and F is the feature matrix). The c is defined as
follows:

c =
1

len(Ck)

∑
vj∈Ck

g(vj) (13)

The centroids for each community are then computed using
K-Means [45] by calculating the mean value for all nodes in
the community and selecting ηk unlabeled nodes that are clos-
est to the community centroids. These nodes are considered
the most informative nodes due to their close proximity to the
centroid.

IV. EXPERIMENTS

We present our empirical evaluations using three real-world
Twitter-attributed networks and three benchmark attributed
network datasets to verify the effectiveness of our proposed
framework ADNET. We evaluate each baseline with a labeling
budget and report the AUC-ROC score for anomaly detection
over the attributed network.

A. Datasets

We evaluate the proposed framework on three real-world
datasets collected from Twitter [46], [47]. In addition, to
compare our results with anomaly detection results, we evalu-
ate our model on three widely used benchmark datasets for

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3582

anomaly detection on attributed networks [24], [27]. In an
attempt to present three new real-world attributed network
datasets for anomaly detection, we use the Twitter API 2 to
collect the tweets, user information, following, and followers
networks for each user in the datasets found in [46], [47]. It
is worth noting that since some of these datasets are old and
Twitter removed some accounts, we experienced an average
loss of 38% from the original Twitter dehydrated datasets. The
statistical summary of all datasets is demonstrated in Table
I. Moreover, since there is no ground truth for anomalies
in the benchmark datasets (CiteSeer, Pubmed, and ACM),
the anomalies are injected [27], [48]. Whereas in the Twit-
ter datasets, we treat bots, the automated user accounts, as
anomalies.

• verified-2019 & botwiki-2019 We combine two datasets
found in [47], one is a verified dataset of human accounts,
and the other is a self-identified list of bots. We collect
attributes related to their account, following and follower
relations, and recent tweets for each user.

• cresci-rtbust-2019 This dataset is composed of users
who participated in retweeting Italian tweets over a two-
week period in 2018 [46]. We collect attributes related to
their account, following and follower relations, and recent
tweets for each user.

• gilani-17 This dataset is manually labeled ’bot’ or ’hu-
man’ based on hand crafted rules [49]. We collect at-
tributes related to their account, following and follower
relations, and recent tweets for each user.

• CiteSeer [48] is a public citation network. Each node
is a published paper, while each edge denotes a citation
relation between two papers. The textual contents of each
paper are treated as its node features.

• Pubmed [48] is a public citation network. Each node
is a published paper, while each edge denotes a citation
relation between two papers. The textual contents of each
paper are treated as its node features.

• ACM [50] is a citation network of papers published
in nine areas before 2016. The dataset was turned into
an undirected graph due to the sparsity of the original
network.

B. Baseline Methods

We compare our proposed framework ADNET with the
following baselines:

• Botometer [17]: A bot detection API service that uses a
thousand user features in its analysis.

• Alhosseini [19]: A GCN approach to learn user repre-
sentations for bot detection.

• SATAR [18]: A self-supervised representation learning
framework that leverages user-related features for bot
detection.

• BotRGCN [20]: A relational GCN approach for repre-
sentation learning and bot detection.

2https://developer.twitter.com/en/docs/twitter-api

• DOMINANT [27]: State-of-the-art deep model that ex-
plicitly models the topological structure and nodal at-
tributes for node embedding learning using GCNs.

• ANOMALOUS [34]: A joint framework to conduct at-
tribute selection and anomaly detection as a whole based
on CUR decomposition and residual analysis.

• Radar [24]: An unsupervised learning framework used
to characterize the residuals of attribute information and
its coherence with the network information for anomaly
detection in attributed networks.

• Graph Transformer: A variant of DOMINANT [27] that
we create. It is a deep autoencoder model that captures the
topological structure and nodal attributes for node embed-
ding learning using a graph-based self-attention encoder
to be used in attributed networks anomaly detection tasks.

C. Evaluation Metrics

We choose AUC-ROC, Precision@N, and Recall@N as
our evaluation metrics since they are widely used in anomaly
detection research methods [24], [27], [34].

• Precision@N: Precision at n is the proportion of anoma-
lies in the top-n nodes in the ranked list.

• Recall@N:Recall at n is the proportion of true anomalies
found in the total number of ground truth anomalies.

• AUC-ROC: The AUC-ROC curve is a classification per-
formance measure at multiple thresholds. The probability
curve, ROC, and AUC represent the capability of ranking
an abnormal node higher than a normal node. This means
that as the AUC value gets closer to 1, the model is better
at ranking anomalies.

D. Parameter Setting

In the experiments on our different datasets, we used Adam
[51] as an optimizer to minimize the loss function. We trained
the proposed model with 300 epochs with a learning rate of
0.005. For the graph transformer encoder, we set the dropout
to 0.1, the number of self-attention layers to 2, the number
of GCN layers to 2, and the number of heads to 1. For our
topology-based active learning sampling method, we choose
a budget of 40 nodes from the unlabeled data for the citation
datasets and a budget of 210 nodes for the Twitter datasets.

E. Experimental Results

In the experiments, we evaluate the performance of our
proposed model in detecting anomalies by comparing it with
the baseline methods. The precision and recall results for the
benchmark datasets are presented in Table II for a budget of
210, and 40 nodes for the Twitter datasets and the citation
datasets, respectively. Fig. 2 compares the AUC-ROC results
of ADNET with the baselines. We present a sample of the
results on two datasets due to page limitations; it is worth
noting that all of our results exhibit similar trends. According
to the results in tables II, Fig.2, and Fig. 3, we have the
following observations:

• ADNET is able to detect bots (Twitter anomalies) better
than the baseline methods. It significantly outperforms the

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3583

Table I: Attributed networks datasets details

verified-2019 &
botwiki-2019 cresci-rtbust-2019 gilani-17 CiteSeer ACM PubMed

Nodes 53,321 824,902 4,239 3,327 16,484 19,717
Edges 671,907 824,272 16,956 4,732 71,980 44,338
Attributes 17,509 42,051 400 3,703 8,337 500
Anomalies 704 891 1,090 150 600 600

bot detection baselines. In addition, DOMINANT, Radar,
ANOMALOUS, and the Graph Transformer models did
not achieve satisfactory results on Twitter data.

• When using 210 and 40 nodes as a budget to label the
datasets, we find that on all attributed network datasets,
our proposed framework, ADNET, achieves the best
anomaly detection performance in terms of Precision@N,
Recall@N, and AUC-ROC. In particular, compared to the
best results from the baselines, ADNET obtains a signifi-
cant improvement on AUC-ROC. The main reason is that
ADNET successfully learns from the most informative
nodes queried and captures the nodal attributes and the
graph structure, which enables the framework to achieve
better performance when detecting anomalies.

• ADNET exhibits superior performance over the baselines
confirming that training node selection from graph parti-
tions enhances the active learning performance.

• Botometer, Radar, and Anomalous perform poorly com-
pared to deep models. These shallow models are not able
to capture the nodal and structural complexities in large
attributed networks.

• The performance of the baseline methods deteriorates as
the size of the attributed network grows. It is evident
in the Twitter datasets where ADNET outperforms the
baselines with a significant increase in performance.

• When graph-based self-attention is used as an encoder
in the auto-encoder model (similar to Graph Transformer
and ADNET), it outperforms the baselines. The reason is
that it preserves both node embeddings and graph struc-
tures better than GCN-based encoders like DOMINANT.

• When comparing the performance of different methods
with respect to increasing labeling budgets, all methods’
performance increases as the labeling budget increases.
Though ADNET offers the most significant improvement
over other baselines.

V. CONCLUSION

In this paper, we propose a novel framework, ADNET,
which uses active learning for anomaly detection in Twitter-
attributed networks. Specifically, we address the limitations
of previous methods and propose a topology-based active
learning framework that uses a deep autoencoder to train
the model and is able to handle large graphs better than
previous methods. Our experimental results demonstrate that
the proposed approach outperforms state-of-the-art methods in
detecting anomalous bot accounts and reduces the annotation
cost in Twitter-attributed networks.

REFERENCES

[1] A. Al-Rawi, J. Groshek, and L. Zhang, “What the fake? assessing the
extent of networked political spamming and bots in the propagation of#
fakenews on twitter,” Online Information Review, 2018.

[2] M. O. Jones, “The gulf information war— propaganda, fake news,
and fake trends: The weaponization of twitter bots in the gulf crisis,”
International journal of communication, vol. 13, p. 27, 2019.

[3] A. H. Wang, “Detecting spam bots in online social networking sites: a
machine learning approach,” in IFIP Annual Conference on Data and
Applications Security and Privacy, pp. 335–342, Springer, 2010.

[4] O. Analytica, “Malicious uses of social media bots will rise,” Emerald
Expert Briefings, no. oxan-db, 2021.

[5] S. Qi, L. AlKulaib, and D. A. Broniatowski, “Detecting and character-
izing bot-like behavior on twitter,” in International conference on social
computing, behavioral-cultural modeling and prediction and behavior
representation in modeling and simulation, pp. 228–232, Springer, 2018.

[6] O. Varol, E. Ferrara, C. A. Davis, F. Menczer, and A. Flammini, “Online
human-bot interactions: Detection, estimation, and characterization,” in
Eleventh international AAAI conference on web and social media, 2017.

[7] O. Varol, C. A. Davis, F. Menczer, and A. Flammini, “Feature engi-
neering for social bot detection,” in Feature engineering for machine
learning and data analytics, pp. 311–334, CRC Press, 2018.

[8] K.-C. Yang, O. Varol, C. A. Davis, E. Ferrara, A. Flammini, and
F. Menczer, “Arming the public with artificial intelligence to counter
social bots,” Human Behavior and Emerging Technologies, vol. 1, no. 1,
pp. 48–61, 2019.

[9] S. Cresci, R. Di Pietro, M. Petrocchi, A. Spognardi, and M. Tesconi,
“Dna-inspired online behavioral modeling and its application to spambot
detection,” IEEE Intelligent Systems, vol. 31, no. 5, pp. 58–64, 2016.

[10] Z. Miller, B. Dickinson, W. Deitrick, W. Hu, and A. H. Wang, “Twitter
spammer detection using data stream clustering,” Information Sciences,
vol. 260, pp. 64–73, 2014.

[11] D. A. Broniatowski, A. M. Jamison, S. Qi, L. AlKulaib, T. Chen, A. Ben-
ton, S. C. Quinn, and M. Dredze, “Weaponized health communication:
Twitter bots and russian trolls amplify the vaccine debate,” American
journal of public health, vol. 108, no. 10, pp. 1378–1384, 2018.

[12] S. Kudugunta and E. Ferrara, “Deep neural networks for bot detection,”
Information Sciences, vol. 467, pp. 312–322, 2018.

[13] Y. Yang, R. Yang, Y. Li, K. Cui, Z. Yang, Y. Wang, J. Xu, and H. Xie,
“Rosgas: Adaptive social bot detection with reinforced self-supervised
gnn architecture search,” arXiv preprint arXiv:2206.06757, 2022.

[14] Y. Li, Y. Ji, S. Li, S. He, Y. Cao, Y. Liu, H. Liu, X. Li, J. Shi, and
Y. Yang, “Relevance-aware anomalous users detection in social network
via graph neural network,” in 2021 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, IEEE, 2021.

[15] S. Feng, H. Wan, N. Wang, and M. Luo, “Botrgcn: Twitter bot detec-
tion with relational graph convolutional networks,” in Proceedings of
the 2021 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pp. 236–239, 2021.

[16] Q. Guo, H. Xie, Y. Li, W. Ma, and C. Zhang, “Social bots detection
via fusing bert and graph convolutional networks,” Symmetry, vol. 14,
no. 1, p. 30, 2021.

[17] C. A. Davis, O. Varol, E. Ferrara, A. Flammini, and F. Menczer,
“Botornot: A system to evaluate social bots,” in Proceedings of the 25th
international conference companion on world wide web, pp. 273–274,
2016.

[18] S. Feng, H. Wan, N. Wang, J. Li, and M. Luo, “Satar: A self-supervised
approach to twitter account representation learning and its application in
bot detection,” in Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pp. 3808–3817, 2021.

[19] S. Ali Alhosseini, R. Bin Tareaf, P. Najafi, and C. Meinel, “Detect me
if you can: Spam bot detection using inductive representation learning,”

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3584

(a) (b)

Figure 2: ROC curves and AUC scores of all methods on different datasets

Figure 3: Performance comparison using different labeling budgets

in Companion Proceedings of The 2019 World Wide Web Conference,
pp. 148–153, 2019.

[20] S. Feng, H. Wan, N. Wang, and M. Luo, “Botrgcn: Twitter bot detec-
tion with relational graph convolutional networks,” in Proceedings of
the 2021 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining, pp. 236–239, 2021.

[21] L. Akoglu, M. McGlohon, and C. Faloutsos, “oddball: Spotting anoma-
lies in weighted graphs,” in Advances in Knowledge Discovery and Data
Mining, pp. 410–421, Springer Berlin Heidelberg, 2010.

[22] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “SpotLight,” 2018.
[23] N. Li, H. Sun, K. Chipman, J. George, and X. Yan, “A probabilistic

approach to uncovering attributed graph anomalies,” in Proceedings
of the 2014 SIAM International Conference on Data Mining (SDM),
Proceedings, pp. 82–90, Society for Industrial and Applied Mathematics,
Apr. 2014.

[24] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for anomaly
detection in attributed networks,” in IJCAI, pp. 2152–2158, 2017.

[25] S. Thudumu, P. Branch, J. Jin, and J. Singh, “A comprehensive survey
of anomaly detection techniques for high dimensional big data,” 2020.

[26] K. Ding, J. Li, N. Agarwal, and H. Liu, “Inductive anomaly detection on
attributed networks,” in 29th International Joint Conference on Artificial
Intelligence, IJCAI 2020, pp. 1288–1294, 2020.

[27] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection
on attributed networks,” in Proceedings of the 2019 SIAM International
Conference on Data Mining, pp. 594–602, Philadelphia, PA: Society for
Industrial and Applied Mathematics, May 2019.

[28] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed

networks,” in Proceedings of the Twelfth ACM International Conference
on Web Search and Data Mining, WSDM ’19, (New York, NY, USA),
pp. 357–365, Association for Computing Machinery, Jan. 2019.

[29] H. Fan, F. Zhang, and Z. Li, “Anomalydae: Dual autoencoder for
anomaly detection on attributed networks,” in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 5685–5689, May 2020.

[30] Y. Pei, T. Huang, W. van Ipenburg, and M. Pechenizkiy, “ResGCN:
attention-based deep residual modeling for anomaly detection on at-
tributed networks,” Mach. Learn., Sept. 2021.

[31] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou,
S. Yang, and Y. Qi, “A Semi-Supervised graph attentive network for
financial fraud detection,” in 2019 IEEE International Conference on
Data Mining (ICDM), pp. 598–607, Nov. 2019.

[32] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and
L. Akoglu, “A comprehensive survey on graph anomaly detection with
deep learning,” June 2021.

[33] B. Perozzi and L. Akoglu, “Scalable anomaly ranking of attributed
neighborhoods,” in Proceedings of the 2016 SIAM International Con-
ference on Data Mining (SDM), Proceedings, pp. 207–215, Society for
Industrial and Applied Mathematics, June 2016.

[34] Z. Peng, M. Luo, J. Li, H. Liu, and Q. Zheng, “ANOMALOUS: A joint
modeling approach for anomaly detection on attributed networks,” in
IJCAI, pp. 3513–3519, 2018.

[35] C. C. Aggarwal, X. Kong, Q. Gu, J. Han, and S. Y. Philip, “Active
learning: A survey,” in Data Classification: Algorithms and Applications,
pp. 571–605, CRC Press, 2014.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

3585

Table II: Results of the evaluation of anomaly detection methods for Precision and Recall at the top n nodes using 210 nodes
as the budget for Twitter datasets and 40 nodes as the budget for the citation networks.

(a) Benchmark Datasets (Twitter Data)

verified-2019\ botwiki-2019 cresci-rtbust-2019 gilani-17
N 50 100 200 300 50 100 200 300 50 100 200 300

Precision@N
Botometer 0.148 0.129 0.324 0.343 0.176 0.231 0.353 0.390 0.188 0.248 0.377 0.418
Alhosseini 0.410 0.399 0.546 0.589 0.368 0.378 0.410 0.453 0.394 0.405 0.439 0.485
SATAR 0.399 0.495 0.536 0.600 0.347 0.411 0.485 0.496 0.371 0.440 0.519 0.530
BotRGCN 0.454 0.576 0.643 0.677 0.400 0.555 0.600 0.656 0.428 0.594 0.642 0.702
Radar 0.153 0.134 0.335 0.354 0.182 0.239 0.364 0.403 0.194 0.255 0.389 0.431
Anomalous 0.374 0.364 0.498 0.537 0.336 0.345 0.374 0.413 0.359 0.369 0.400 0.441
Dominant 0.363 0.45 0.488 0.546 0.316 0.374 0.441 0.451 0.338 0.400 0.471 0.482
Graph Transformer 0.392 0.497 0.555 0.584 0.345 0.479 0.518 0.566 0.369 0.512 0.554 0.605
ADNET 0.535 0.678 0.755 0.817 0.469 0.651 0.721 0.867 0.501 0.696 0.771 0.927

Recall@N
Botometer 0.005 0.011 0.016 0.020 0.005 0.012 0.017 0.021 0.005 0.013 0.019 0.022
Alhosseini 0.055 0.115 0.205 0.256 0.060 0.122 0.219 0.273 0.064 0.131 0.234 0.292
SATAR 0.061 0.115 0.205 0.248 0.064 0.122 0.216 0.265 0.069 0.130 0.297 0.283
BotRGCN 0.062 0.119 0.219 0.302 0.067 0.127 0.234 0.323 0.072 0.135 0.251 0.345
Radar 0.005 0.012 0.015 0.018 0.005 0.011 0.016 0.019 0.005 0.011 0.017 0.02
Anomalous 0.047 0.098 0.174 0.217 0.051 0.104 0.186 0.232 0.054 0.111 0.199 0.248
Dominant 0.051 0.096 0.171 0.207 0.054 0.102 0.183 0.221 0.057 0.109 0.195 0.236
Graph Transformer 0.052 0.099 0.181 0.25 0.056 0.105 0.194 0.267 0.059 0.112 0.207 0.285
ADNET 0.072 0.135 0.248 0.34 0.076 0.243 0.463 0.662 0.081 0.26 0.495 0.708

(b) Benchmark Datasets (Citation Netwroks)

CiteSeer ACM Pubmed
N 50 100 200 300 50 100 200 300 50 100 200 300

Precision@N
Radar 0.174 0.171 0.209 0.285 0.226 0.257 0.362 0.400 0.035 0.043 0.057 0.057
Anomalous 0.396 0.524 0.638 0.627 0.480 0.605 0.667 0.705 0.412 0.498 0.555 0.535
Dominant 0.397 0.490 0.618 0.609 0.486 0.619 0.676 0.752 0.392 0.487 0.544 0.572
Graph Transformer 0.447 0.561 0.675 0.722 0.565 0.652 0.695 0.783 0.474 0.515 0.563 0.601
ADNET 0.616 0.774 0.832 0.920 0.777 0.897 0.957 0.962 0.649 0.705 0.771 0.810

Recall@N
Radar 0.048 0.069 0.114 0.174 0.045 0.080 0.114 0.151 0.005 0.010 0.014 0.017
Anomalous 0.105 0.212 0.349 0.396 0.078 0.149 0.269 0.321 0.045 0.093 0.165 0.206
Dominant 0.102 0.206 0.326 0.397 0.083 0.151 0.275 0.324 0.048 0.091 0.162 0.196
Graph Transformer 0.121 0.225 0.374 0.447 0.080 0.154 0.290 0.378 0.050 0.094 0.172 0.237
ADNET 0.167 0.312 0.416 0.517 0.110 0.313 0.499 0.519 0.068 0.378 0.536 0.643

[36] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, B. B. Gupta, X. Chen,
and X. Wang, “A survey of deep active learning,” Aug. 2020.

[37] Z. Allen-Zhu, Y. Li, A. Singh, and Y. Wang, “Near-optimal discrete
optimization for experimental design: a regret minimization approach,”
Math. Program., vol. 186, pp. 439–478, Mar. 2021.

[38] T. Pimentel, M. Monteiro, J. Viana, A. Veloso, and N. Ziviani, “A gen-
eralized active learning approach for unsupervised anomaly detection,”
Stat, vol. 1050, p. 23, 2018.

[39] S. Russo, M. Lürig, W. Hao, B. Matthews, and K. Villez, “Active
learning for anomaly detection in environmental data,” Environmental
Modelling & Software, vol. 134, p. 104869, Dec. 2020.

[40] F. Regol, S. Pal, Y. Zhang, and M. Coates, “Active learning on attributed
graphs via graph cognizant logistic regression and preemptive query
generation,” in Proceedings of the 37th International Conference on
Machine Learning (H. D. Iii and A. Singh, eds.), vol. 119 of Proceedings
of Machine Learning Research, pp. 8041–8050, PMLR, 2020.

[41] Y. Li, J. Yin, and L. Chen, “SEAL: Semisupervised adversarial active
learning on attributed graphs,” IEEE Trans Neural Netw Learn Syst,
vol. 32, pp. 3136–3147, July 2021.

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, pp. 5998–6008, 2017.

[43] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Intro-
duction to Cluster Analysis. John Wiley & Sons, Sept. 2009.

[44] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space

embedding,” in International Symposium onInformation Theory, 2004.
ISIT 2004. Proceedings., pp. 31–, 2004.

[45] Z. Zhang, J. Zhang, and H. Xue, “Improved K-Means clustering al-
gorithm,” in 2008 Congress on Image and Signal Processing, vol. 5,
pp. 169–172, ieeexplore.ieee.org, May 2008.

[46] M. Mazza, S. Cresci, M. Avvenuti, W. Quattrociocchi, and M. Tesconi,
“RTbust: Exploiting temporal patterns for botnet detection on twitter,”
in Proceedings of the 10th ACM Conference on Web Science, pp. 183–
192, New York, NY, USA: Association for Computing Machinery, June
2019.

[47] K.-C. Yang, O. Varol, P.-M. Hui, and F. Menczer, “Scalable and
generalizable social bot detection through data selection,” AAAI, vol. 34,
pp. 1096–1103, Apr. 2020.

[48] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-
Rad, “Collective classification in network data,” 2008.

[49] Z. Gilani, R. Farahbakhsh, G. Tyson, L. Wang, and J. Crowcroft, “Of
bots and humans (on twitter),” in Proceedings of the 2017 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining 2017, pp. 349–354, 2017.

[50] X. Huang, Q. Song, J. Li, and X. Hu, “Exploring expert cognition for
attributed network embedding,” in Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, pp. 270–
278, 2018.

[51] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
Dec. 2014.

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on November 09,2023 at 22:32:04 UTC from IEEE Xplore. Restrictions apply.

